lunes, 12 de septiembre de 2016


INTEGRANTES DEL EQUIPO:


ANA LAURA ARCE MARTINEZ. 

ALONDRA NAVARRO.

LUIS GERARDO SANCHEZ ESPINOZA.

jueves, 8 de septiembre de 2016

  • Modo de transferencia asíncrona ATM
El modo de transferencia asíncrona (Asynchronous transfer mode, ATM) es una red de conmutación de paquetes que envía paquetes de longitud fija a través de LANs o WANs, en lugar de paquetes de longitud variable utilizados en otras tecnologías.
Los paquetes de longitud fija, o celdas, son paquetes de datos que contienen únicamente información básica de la ruta, permitiendo a los dispositivos de conmutación enrutar el paquete rápidamente. La comunicación tiene lugar sobre un sistema punto-a-punto que proporciona una ruta de datos virtual y permanente entre cada estación.
Importante La velocidad de transmisión de ATM permite transmitir voz, vídeo en tiempo real, audio con calidad CD, imágenes y transmisiones de datos del orden de megabits.
Utilizando ATM, podemos enviar datos desde una oficina principal a una ubicación remota. Los datos viajan desde una LAN sobre una línea digital a un conmutador ATM y dentro de la red ATM. Pasa a través de la red ATM y llega a otro conmutador ATM en la LAN de destino. Debido a su ancho de banda expandido, ATM puede utilizarse en entornos de:
• Voz, vídeo en tiempo real.
• Audio con calidad CD
• Datos de imágenes, como radiología en tiempo real.
• Transmisión de datos del orden de megabits.
Método de acceso: Una red ATM utiliza el método de acceso punto-a-punto, que transfiere paquetes de longitud fija de un equipo a otro mediante un equipo de conmutación ATM. El resultado es una tecnología que transmite un paquete de datos pequeño y compacto a una gran velocidad.
Velocidad de transferencia La velocidad de transferencia en una red ATM se encuentra entre 155 y 622 Mbps.
  • Interfaz de datos distribuida por fibra FDDI
Una red de Interfaz de datos distribuidos por fibra (Fiber Distributed Data Interface, FDDI) proporciona conexiones de alta velocidad para varios tipos de redes. FDDI fue diseñado para su uso con equipos que requieren velocidades mayores que los 10 Mbps disponibles de Ethernet o los 4 Mbps disponibles de Token Ring. Una red FDDI puede soportar varias LANs de baja capacidad que requieren un backbone de alta velocidad.
Una red FDDI está formada por dos flujos de datos similares que fluyen en direcciones opuestas por dos anillos. Existe un anillo primario y otro secundario. Si hay un problema con el anillo primario, como el fallo del anillo o una rotura del cable, el anillo se reconfigura a sí mismo transfiriendo datos al secundario, que continúa transmitiendo.
Importante
FDDI proporciona un backbone de alta velocidad a las redes LAN o WAN existentes.
Método de acceso
El método de acceso utilizado en una red FDDI es el paso de testigo. Un equipo en una red FDDI puede transmitir tantos paquetes como pueda producir en una tiempo predeterminado antes de liberar el testigo. Tan pronto como un equipo haya finalizado la transmisión o después de un tiempo de transmisión predeterminado, el equipo libera el testigo.
Como un equipo libera el testigo cuando finaliza la transmisión, varios paquetes pueden circular por el anillo al mismo tiempo. Este método de paso de testigo es más eficiente que el de una red Token Ring, que permite únicamente la circulación de una trama a la vez. Este método de paso de testigo también proporciona un mayor rendimiento de datos a la misma velocidad de transmisión.
Velocidad de transferencia
La velocidad de transferencia en una red FDDI se encuentra entre 155 y 622 Mbps.
  • Frame Relay
Frame relay es una red de conmutación de paquetes que envía paquetes de longitud variable sobre LANs o WANs. Los paquetes de longitud variable, o tramas, son paquetes de datos que contienen información de direccionamiento adicional y gestión de errores necesaria para su distribución.
La conmutación tiene lugar sobre una red que proporciona una ruta de datos permanente virtual entre cada estación. Este tipo de red utiliza enlaces digitales de área extensa o fibra óptica y ofrece un acceso rápido a la transferencia de datos en los que se paga únicamente por lo que se necesita.
La conmutación de paquetes es el método utilizado para enviar datos sobre una WAN dividiendo un paquete de datos de gran tamaño en piezas más pequeñas (paquetes). Estas piezas se envían mediante un conmutador de paquetes, que envía los paquetes individuales a través de la WAN utilizando la mejor ruta actualmente disponible.
Aunque estos paquetes pueden viajar por diferentes rutas, el equipo receptor puede ensamblar de nuevo las piezas en la trama de datos original.
Sin embargo, podemos tener establecido un circuito virtual permanente (permanent virtual circuit, PVC), que podría utilizar la misma ruta para todos los paquetes. Esto permite una transmisión a mayor velocidad que las redes Frame Relay convencionales y elimina la necesidad para el desensamblado y reensamblado de paquetes.
Método de acceso
Frame relay utiliza un método de acceso punto-a-punto, que transfiere paquetes de tamaño variable directamente de un equipo a otro, en lugar de entre varios equipos y periféricos.
Velocidad de transferencia
Frame relay permite una transferencia de datos que puede ser tan rápida como el proveedor pueda soportar a través de líneas digitales.
5) AMPLIACIÓN DE UNA RED:
Para satisfacer las necesidades de red crecientes de una organización, se necesita ampliar el tamaño o mejorar el rendimiento de una red. No se puede hacer crecer la red simplemente añadiendo nuevos equipos y más cable.
Cada topología o arquitectura de red tiene sus límites. Se puede, sin embargo, instalar componentes para incrementar el tamaño de la red dentro de su entorno existente. Entre los componentes que le permiten ampliar la red se incluyen:
• Repetidores y concentradores (hub) Los repetidores y concentradores retransmiten una señal eléctrica recibida en un punto de conexión (puerto) a todos los puertos para mantener la integridad de la señal.
• Puentes (bridge) Los puentes permiten que los datos puedan fluir entre LANs.
• Conmutadores (switch) Los conmutadores permiten flujo de datos de alta velocidad a LANs.
• Enrutadores (router) Los enrutadores permiten el flujo de datos a través de LANs o WANs, dependiendo de la red de destino de los datos.
• Puertas de enlace (Gateway) Las puertas de enlace permiten el flujo de datos a través de LANs o WANs y funcionan de modo que equipos que utilizan diversos protocolos puedan comunicarse entre sí.
También puede ampliar una red permitiendo a los usuarios la conexión a una red desde una ubicación remota. Para establecer una conexión remota, los tres componentes requeridos son un cliente de acceso remoto, un servidor de acceso remoto y conectividad física. Microsoft Windows 2000 permite a clientes remotos conectarse a servidores de acceso remoto utilizando:
• Red pública telefónica conmutada (RTC).
• Red digital de servicios integrados (RDSI).
• X.25.
• Línea ADSL (Asymmetric Digital Subscriber Line).
  • Repetidores y concentradores (hub)
Podemos utilizar repetidores y concentradores para ampliar una red añadiendo dos o más segmentos de cableado. Estos dispositivos utilizados habitualmente son económicos y fáciles de instalar.
Repetidores Los repetidores reciben señales y las retransmiten a su potencia y definición originales. Esto incrementa la longitud práctica de un cable (si un cable es muy largo, la señal se debilita y puede ser irreconocible).
Instalar un repetidor entre segmentos de cable permite a las señales llegar más lejos. Los repetidores no traducen o filtran las señales. Para que funcione un repetidor, ambos segmentos conectados al repetidor deben utilizar el mismo método de acceso.
Por ejemplo, un repetidor no puede traducir un paquete Ethernet a un paquete Token Ring. Los repetidores no actúan como filtros para restringir el flujo del tráfico problemático. Los repetidores envían cada bit de datos desde un segmento de cable a otro, incluso si los datos están formados por paquetes malformados o no destinados a un equipo en otro segmento.
Importante Los repetidores son una forma económica de extender la longitud de cableado sin sacrificar la pérdida de datos. Los concentradores permiten conectar varios equipos a un punto central sin pérdida de datos. Un concentrador transmite el paquete de datos a todos los equipos y segmentos que están conectados al mismo. Utilice un repetidor para:
• Conectar dos o más segmentos con cable similar.
• Regenerar la señal para incrementar la distancia transmitida.
• Transmitir todo el tráfico en ambas direcciones.
• Conectar dos segmentos del modo más rentable posible.
Concentradores (Hub)
Los concentradores son dispositivos de conectividad que conectan equipos en una topología en estrella. Los concentradores contienen múltiples puertos para conectar los componentes de red.
Si utiliza un concentrador, una rotura de la red no afecta a la red completa; sólo el segmento y el equipo adjunto al segmento falla. Un único paquete de datos enviado a través de un concentrador fluye a todos los equipos conectados. Hay dos tipos de concentradores:
Concentradores pasivos. Envían la señal entrante directamente a través de sus puertos sin ningún procesamiento de la señal. Estos concentradores son generalmente paneles de cableado.
Concentradores activos. A veces denominados repetidores multipuerto, reciben las señales entrantes, procesan las señales y las retransmiten a sus potencias y definiciones originales a los equipos conectados o componentes.
Use un concentrador para:
• Cambiar y expandir fácilmente los sistemas de cableado.
• Utilizar diferentes puertos con una variedad de tipos de cable.
• Permitir la monitorización central de la actividad y el tráfico de red.
  • Puentes (Bridges)
Un puente es un dispositivo que distribuye paquetes de datos en múltiples segmentos de red que utilizan el mismo protocolo de comunicaciones. Un puente distribuye una señal a la vez. Si un paquete va destinado a un equipo dentro del mismo segmento que el emisor, el puente retiene el paquete dentro de ese segmento. Si el paquete va destinado a otro segmento, lo distribuye a ese segmento.
Direcciones MAC
A medida que el tráfico cruza a través del puente, la información sobre las direcciones MAC de los equipos emisores se almacena en la memoria del puente. El puente usa esta información para construir una tabla basada en estas direcciones.
A medida que se envían más datos, el puente construye una tabla puente que identifica a cada equipo y su ubicación en los segmentos de red. Cuando el puente recibe un paquete, la dirección de origen se compara a la dirección de origen listada en la tabla. Si la dirección fuente no está presente en la tabla, se añade a la misma.
A continuación, el puente compara la dirección de destino con la dirección de destino listada en la tabla. Si reconoce la ubicación de la dirección de destino, reenvía el paquete a esta dirección. Si no reconoce la dirección de destino, reenvía el paquete a todos los segmentos.
Use un puente para:
• Expandir la longitud de un segmento.
• Proporcionar un mayor número de equipos en la red.
• Reducir cuellos de botella de tráfico resultante de un excesivo número de equipos conectados.
• Dividir una red sobrecargada en dos redes separadas, reduciendo la cantidad de tráfico en cada segmento y haciendo cada red más eficiente.
• Enlazar cables físicos de distinto tipo, como cable de par trenzado con cable coaxial en Ethernet.
  • Conmutadores o Switches
Los conmutadores son similares a los puentes, pero ofrecen una conexión de red más directa entre los equipos de origen y destino. Cuando un conmutador recibe un paquete de datos, crea una conexión interna separada, o segmento, entre dos de sus puertos cualquiera y reenvía el paquete de datos al puerto apropiado del equipo de destino únicamente, basado en la información de la cabecera de cada paquete. Esto aísla la conexión de los demás puertos y da acceso a los equipos origen y destino a todo el ancho de banda de una red.
A diferencia de un concentrador, los conmutadores son comparables a un sistema telefónico con líneas privadas. En tal sistema, si una persona llama a cualquier otra, el operador o conmutador telefónico les conecta a una línea dedicada. Esto permite que tengan lugar más conversaciones a más en un momento dado.
Use un conmutador para:
• Enviar un paquete directamente del equipo origen al destino.
• Proporcionar una mayor velocidad de transmisión de datos.
  • Enrutadores o routers
Un enrutador es un dispositivo que actúa como un puente o conmutador, pero proporciona funcionalidad adicional. Al mover datos entre diferentes segmentos de red, los enrutadores examinan la cabecera del paquete para determinar la mejor ruta posible del paquete.
Un enrutador conoce el camino a todos los segmentos de la red accediendo a información almacenada en la tabla de rutas. Los enrutadores permiten a todos los usuarios de una red compartir una misma conexión a Internet o a una WAN.
Use un enrutador para:
• Enviar paquetes directamente a un equipo de destino en otras redes o segmento. Los enrutadores usan una dirección de paquete más completa que los puentes. Los enrutadores garantizan que los paquetes viajen por las rutas más eficientes a sus destinos. Si un enlace entre dos enrutadores falla, el enrutador de origen puede determinar una ruta alternativa y mantener el tráfico en movimiento.
• Reducir la carga en la red. Los enrutadores leen sólo los paquetes de red direccionados y pasan la información sólo si la dirección de red es conocida. De este modo, no pasan información corrupta. Esta capacidad de controlar los datos que pasan a través del enrutador reduce la cantidad de tráfico entre redes y permite a los enrutadores utilizar estos enlaces más eficientemente que los puentes.
  • Puertas de enlace Gateway
Las puertas de enlace permiten la comunicación entre diferentes arquitecturas de red. Una puerta de enlace toma los datos de una red y los empaqueta de nuevo, de modo que cada red pueda entender los datos de red de la otra.
Una puerta de enlace es cómo un intérprete. Por ejemplo, si dos grupos de personas pueden físicamente hablar entre sí pero hablan idiomas diferentes, necesitan un intérprete para comunicarse. De modo similar, dos redes pueden tener una conexión física, pero necesitan una puerta de enlace para traducir la comunicación de red.
Use una puerta de enlace para enlazar dos sistemas que no utilizan:
• La misma arquitectura.
• Los mismos conjuntos de reglas de comunicación y regulaciones.
• Las mismas estructuras de formateo de datos.

6) Tipos de conectividad de acceso remoto
Windows server y otros sistemas operativos de características de servidores, permiten a los usuarios conectarse a una red desde una ubicación remota utilizando una diversidad de hardware, como módems. Un módem permite a un equipo comunicarse a través de líneas telefónicas.
El cliente de acceso remoto se conecta al servidor de acceso remoto, que actúa de enrutador o de puerta de enlace, para el cliente a la red remota. Una línea telefónica proporciona habitualmente la conectividad física entre el cliente y el servidor. El servidor de acceso remoto ejecuta la característica de enrutamiento y acceso remoto de para soportar conexiones remotas y proporcionar interoperabilidad con otras soluciones de acceso remoto.
Los dos tipos de conectividad de acceso remoto proporcionados en Windows 2000/3 server son el acceso telefónico a redes y la red privada virtual (VPN).
Acceso remoto telefónico a redes: Windows 2000/3 Server proporciona un acceso remoto telefónico a los usuarios que realizan llamadas a intranets empresariales. El equipo de acceso telefónico instalado en un servidor de acceso remoto ejecutando Windows 2000/3 responde peticiones de conexión entrantes desde clientes de acceso telefónico remotos.
El equipo de acceso telefónico responde la llamada, verifica la identidad del llamador y transfiere los datos entre el cliente remoto y la intranet corporativa.
Red privada virtual Una red privada virtual (virtual private network, VPN) utiliza tecnología de cifrado para proporcionar seguridad y otras características disponibles únicamente en redes privadas. Una VPN permite establecer una conexión remota segura a un servidor corporativo que está conectado tanto a la LAN corporativa como a una red pública, como la Internet.
Desde la perspectiva de usuario, la VPN proporciona una conexión punto-a-punto entre el equipo del usuario y un servidor corporativo. La interconexión intermedia de redes es transparente al usuario, como si tuviera conexión directa.
Red pública telefónica conmutada RTC
La red pública telefónica conmutada (RTC) hace referencia al estándar telefónico internacional basado en utilizar líneas de cobre para transmitir datos de voz analógica. Este estándar fue diseñado para transportar únicamente las frecuencias mínimas necesarias para distinguir voces humanas.
Como la RTC no fue diseñada para transmisiones de datos, existen límites a la velocidad máxima de transmisión de una conexión RTC. Además, la comunicación analógica es susceptible de incluir ruido de línea que causa una reducción de la velocidad de transmisión de datos.
La principal ventaja de la RTC es su disponibilidad a nivel mundial y el bajo coste del hardware debido a la producción masiva.
Módem analógico El equipo de acceso telefónico a redes está formado por un módem analógico para el cliente de acceso remoto y otro para el servidor de acceso remoto. Un módem analógico es un dispositivo que permite a un equipo transmitir información a través de una línea telefónica estándar. Como un equipo es digital y una línea de teléfono es analógica, se necesitan módems analógicos para convertir la señal digital a analógica, y viceversa.
Para organizaciones de mayor tamaño, el servidor de acceso remoto está adjunto a un banco de módems que contiene cientos de módems. Con módems analógicos tanto en el servidor de acceso remoto como en el cliente de acceso remoto, la máxima velocidad de transferencia binaria soportada por conexiones PSTN es de 56.000 bits por segundo, o 56 kilobits por segundo.
RED DIGITAL DE SERVICIOS INTEGRADOS RDSI – ISDN
La red digital de servicios integrados (RDSI) es un estándar de comunicaciones internacional para enviar voz, vídeo y datos a través de líneas telefónicas digitales y líneas telefónicas estándares. RDSI tiene la capacidad de ofrecer dos conexiones simultáneamente a través de un único par de línea telefónica. Las dos conexiones pueden ser cualquier combinación de datos, voz, vídeo o fax. La misma línea utiliza un servicio de subscriptor RDSI, que se denomina Interfaz de Acceso Básico (Basic Rate Interface, BRI). BRI tiene dos canales, denominados canales B, a 64 Kbps cada uno, que transportan los datos, y un canal de datos a 16 Kbps para información de control. Los dos canales B pueden combinarse para formar una única conexión a 128 Kbps.
El otro servicio de velocidad de transmisión RDSI, el Interfaz de Acceso Primario (Primary Rate Interface, PRI), tiene 23 canales B y un canal D a 64 Kbps y utiliza más pares de líneas. PRI es mucho más caro que BRI y no es el habitualmente escogido por usuarios de acceso remoto individuales. En la mayoría de casos, BRI es el preferido cuando se utiliza RDSI para el acceso remoto.
Transmisión digital
RDSI es una transmisión digital, a diferencia de la transmisión analógica de RTC. Las líneas RDSI deben ser utilizadas tanto en el servidor como en el sitio remoto. Además, debemos instalar un módem RDSI tanto en el servidor como en el cliente remoto.
Ampliación sobre el intercambio telefónico local
RDSI no es simplemente una conexión punto-a-punto. Las redes RDSI se amplían desde el intercambio telefónico local al usuario remoto e incluyen todas las telecomunicaciones y equipo de conmutación que subyace entre ellos.
Módem RDSI El equipo de acceso remoto telefónico a redes está formado por un módem RDSI tanto para el cliente como el servidor de acceso remoto. RDSI ofrece una comunicación más rápida que RTC, comunicándose a velocidades superiores a 64 Kbps.
X.25
En una red X.25, los datos se transmiten utilizando conmutación de paquetes. X.25 utiliza un equipo de comunicaciones de datos para crear una red universal y detallada de nodos de reenvío de paquetes que envían un paquete X.25 a su dirección designada.
Ensamblador/desensamblador de paquetes X.25 (PAD) Los clientes de acceso telefónico a redes pueden acceder directamente a una red X.25 utilizando un ensamblador/desensamblador de paquetes X.25 (packet assembler/disassembler, PAD).
Un PAD permite el uso de terminales y conexiones de módems sin necesidad de hardware y conectividad de clientes costosa para hablar directamente a X.25. Los PADs de acceso remoto son una elección práctica para los clientes de acceso remoto porque no requieren insertar una línea X.25 en la parte posterior del equipo. El único requisito para un PAD de acceso remoto es el número telefónico del servicio de PAD para el operador.
El servicio de enrutamiento y acceso remoto proporciona acceso a la red X.25 en alguna de las dos configuraciones mostradas en la siguiente tabla:
LINEA DE SUBSCRIPTOR DIGITAL ASIMÉTRICA O ASÍNCRONA ADSL
La línea de subscriptor digital asimétrica ( Asymmetric digital subscriber line, ADSL) es una tecnología que permite enviar mayor cantidad de datos sobre líneas telefónicas de cobre existentes. ADSL lo consigue utilizando la porción del ancho de banda de la línea telefónica no utilizado por la voz, permitiendo la transmisión simultánea de voz y datos.
Los usuarios de acceso remoto telefónico a redes reciben mucha más información que envían. La naturaleza asimétrica de la conexión ADSL encaja bien con la mayoría de usos de negocio remoto e Internet. En la recepción de datos, ADSL soporta velocidades de transferencia desde 1,5 a 9 Mbps.
En el envío de datos, ADSL soporta velocidad de transferencia de 16 a 640 Kbps. Aunque ADSL proporciona mayores velocidades de transmisión de datos que las conexiones PSTN y RDSI, el equipo cliente puede recibir datos a una mayor velocidad que enviar datos.
Interfaz LAN o interfaz de acceso telefónico a redes
El equipo ADSL puede aparecer a Windows 2000 tanto como un interfaz LAN como un interfaz de acceso telefónico a redes. Cuando un adaptador ADSL aparece como un interfaz LAN, la conexión ADSL opera del mismo modo que una conexión LAN a Internet.
Cuando un adaptador ADSL aparece como un interfaz de acceso telefónico a redes, ADSL proporciona una conexión física y los paquetes individuales se envían utilizando el modo de transferencia asíncrona (ATM). Se instala un adaptador ATM con un puerto ADSL tanto en el cliente como en el servidor de acceso remoto.

TOPOLOGÍAS DE RED:
Una topología de red es la estructura de equipos, cables y demás componentes en una red. Es un mapa de la red física. El tipo de topología utilizada afecta al tipo y capacidades del hardware de red, su administración y las posibilidades de expansión futura.
La topología es tanto física como lógica:

  1. • La topología física describe cómo están conectados los componentes físicos de una red.
  2. • La topología lógica describe el modo en que los datos de la red fluyen a través de componentes físicos.
Existen cinco topologías básicas:

  1. Bus. Los equipos están conectados a un cable común compartido.
  2. Estrella. Los equipos están conectados a segmentos de cable que se extienden desde una ubicación central, o concentrador.
  3. Anillo. Los equipos están conectados a un cable que forma un bucle alrededor de una ubicación central.
  4. Malla. Los equipos de la red están conectados entre sí mediante un cable.
  5. Híbrida. Dos o más topologías utilizadas juntas.
  • TOPOLOGÍA DE BUS:
En una topología de bus, todos los equipos de una red están unidos a un cable continuo, o segmento, que los conecta en línea recta. En esta topología en línea recta, el paquete se transmite a todos los adaptadores de red en ese segmento. Importante Los dos extremos del cable deben tener terminaciones. Todos los adaptadores de red reciben el paquete de datos.
Debido a la forma de transmisión de las señales eléctricas a través de este cable, sus extremos deben estar terminados por dispositivos de hardware denominados terminadores, que actúan como límites de la señal y definen el segmento.
Si se produce una rotura en cualquier parte del cable o si un extremo no está terminado, la señal balanceará hacia adelante y hacia atrás a través de la red y la comunicación se detendrá.
El número de equipos presentes en un bus también afecta al rendimiento de la red. Cuantos más equipos haya en el bus, mayor será el número de equipos esperando para insertar datos en el bus, y en consecuencia, la red irá más lenta.
Además, debido al modo en que los equipos se comunican en una topología de bus, puede producirse mucho ruido. Ruido es el tráfico generado en la red cuando los equipos intentan comunicarse entre sí simultáneamente. Un incremento del número de equipos produce un aumento del ruido y la correspondiente reducción de la eficacia de la red.
  • TOPOLOGÍA EN ESTRELLA:
En una topología en estrella, los segmentos de cable de cada equipo en la red están conectados a un componente centralizado, o concentrador. Un concentrador es un dispositivo que conecta varios equipos juntos. En una topología en estrella, las señales se transmiten desde el equipo, a través del concentrador, a todos los equipos de la red. A mayor escala, múltiples LANs pueden estar conectadas entre sí en una topología en estrella.
Una ventaja de la topología en estrella es que si uno de sus equipos falla, únicamente este equipo es incapaz de enviar o recibir datos. El resto de la red funciona normalmente.
El inconveniente de utilizar esta topología es que debido a que cada equipo está conectado a un concentrador, si éste falla, fallará toda la red. Además, en una topología en estrella, el ruido se crea en la red.
  • TOPOLOGÍA EN ANILLO:
En una topología en anillo, los equipos están conectados con un cable de forma circular. A diferencia de la topología de bus, no hay extremos con terminaciones. Las señales viajan alrededor del bucle en una dirección y pasan a través de cada equipo, que actúa como repetidor para amplificar la señal y enviarla al siguiente equipo.
A mayor escala, en una topología en anillo múltiples LANs pueden conectarse entre sí utilizando el cable coaxial ThickNet o el cable de fibra óptica.
La ventaja de una topología en anillo es que cada equipo actúa como repetidor, regenerando la señal y enviándola al siguiente equipo, conservando la potencia de la señal.
Paso de testigo
El método de transmisión de datos alrededor del anillo se denomina paso de testigo (token passing). Un testigo es una serie especial de bits que contiene información de control. La posesión del testigo permite a un dispositivo de red transmitir datos a la red.
Cada red tiene un único testigo.
El equipo emisor retira el testigo del anillo y envía los datos solicitados alrededor del anillo. Cada equipo pasa los datos hasta que el paquete llega el equipo cuya dirección coincide con la de los datos. El equipo receptor envía un mensaje al equipo emisor indicando que se han recibido los datos. Tras la verificación, el equipo emisor crea un nuevo testigo y lo libera a la red.
La ventaja de una topología en anillo es que puede gestionar mejor entornos con mucho tráfico que las redes con bus.
Además, hay mucho menos impacto del ruido en las topologías en anillo.
El inconveniente de una topología en anillo es que los equipos sólo pueden enviar los datos de uno en uno en un único Token Ring. Además, las topologías en anillo son normalmente más caras que las tecnologías de bus.
  • TOPOLOGÍA DE MALLA:
En una topología de malla, cada equipo está conectado a cada uno del resto de equipos por un cable distinto. Esta configuración proporciona rutas redundantes a través de la red de forma que si un cable falla, otro transporta el tráfico y la red sigue funcionando.
A mayor escala, múltiples LANs pueden estar en estrella conectadas entre sí en una topología de malla utilizando red telefónica conmutada, un cable coaxial ThickNet o el cable de fibra óptica.
Una de las ventajas de las topologías de malla es su capacidad de respaldo al proporcionar múltiples rutas a través de la red. Debido a que las rutas redundantes requieren más cable del que se necesita en otras topologías, una topología de malla puede resultar cara.
  • TOPOLOGÍAS HÍBRIDAS:
En una topología híbrida, se combinan dos o más topologías para formar un diseño de red completo. Raras veces, se diseñan las redes utilizando un solo tipo de topología. Por ejemplo, es posible que desee combinar una topología en estrella con una topología de bus para beneficiarse de las ventajas de ambas.
Importante: En una topología híbrida, si un solo equipo falla, no afecta al resto de la red.
Normalmente, se utilizan dos tipos de topologías híbridas: topología en estrella-bus y topología en estrella-anillo.
En estrella-bus: En una topología en estrella-bus, varias redes de topología en estrella están conectadas a una conexión en bus. Cuando una configuración en estrella está llena, podemos añadir una segunda en estrella y utilizar una conexión en bus para conectar las dos topologías en estrella.
En una topología en estrella-bus, si un equipo falla, no afectará al resto de la red. Sin embargo, si falla el componente central, o concentrador, que une todos los equipos en estrella, todos los equipos adjuntos al componente fallarán y serán incapaces de comunicarse.
En estrella-anillo: En la topología en estrella-anillo, los equipos están conectados a un componente central al igual que en una red en estrella. Sin embargo, estos componentes están enlazados para formar una red en anillo.
Al igual que la topología en estrella-bus, si un equipo falla, no afecta al resto de la red. Utilizando el paso de testigo, cada equipo de la topología en estrella-anillo tiene las mismas oportunidades de comunicación. Esto permite un mayor tráfico de red entre segmentos que en una topología en estrella-bus.
4) TECNOLOGÍAS DE REDES:
Utilizamos diferentes tecnologías de redes para la comunicación entre equipos de LANs y WANs. Podemos utilizar una combinación de tecnologías para obtener la mejor relación costo-beneficio y la máxima eficacia del diseño de nuestra red.
Hay muchas tecnologías de redes disponibles, entre las que se encuentran:
Ethernet.
• Token ring.
• Modo de transferencia asíncrona (asynchronous transfer mode, ATM).
• Interfaz de datos distribuidos por fibra (Fiber Distributed Data Interface, FDDI).
• Frame relay.
Una de las principales diferencias entre estas tecnologías es el conjunto de reglas utilizada por cada una para insertar datos en el cable de red y para extraer datos del mismo. Este conjunto de reglas se denomina método de acceso. Cuando los datos circulan por la red, los distintos métodos de acceso regulan el flujo del tráfico de red.
  • Ethernet
Ethernet es una popular tecnología LAN que utiliza el Acceso múltiple con portadora y detección de colisiones (Carrier Sense Múltiple Access with Collision Detection, CSMA/CD) entre estaciones con diversos tipos de cables. Ethernet es pasivo, lo que significa que no requiere una fuente de alimentación propia, y por tanto no falla a menos que el cable se corte físicamente o su terminación sea incorrecta. Ethernet se conecta utilizando una topología de bus en la que el cable está terminado en ambos extremos.
Ethernet utiliza múltiples protocolos de comunicación y puede conectar entornos informáticos heterogéneos, incluyendo Netware, UNIX, Windows y Macintosh.
Método de acceso: El método de acceso a la red utilizado por Ethernet es el Acceso múltiple con portadora y detección de colisiones (Carrier Sense Múltiple Access with Collision Detection, CSMA/CD). CSMA/CD es un conjunto de reglas que determina el modo de respuesta de los dispositivos de red cuando dos de ellos intentan enviar datos en la red simultáneamente. La transmisión de datos por múltiples equipos simultáneamente a través de la red produce una colisión.
Cada equipo de la red, incluyendo clientes y servidores, rastrea el cable en busca de tráfico de red. Únicamente cuando un equipo detecta que el cable está libre y que no hay tráfico envía los datos. Después de que el equipo haya transmitido los datos en el cable, ningún otro equipo puede transmitir datos hasta que los datos originales hayan llegado a su destino y el cable vuelva a estar libre. Tras detectar una colisión, un dispositivo espera un tiempo aleatorio y a continuación intenta retransmitir el mensaje.
Si el dispositivo detecta de nuevo una colisión, espera el doble antes de intentar retransmitir el mensaje.
Velocidad de transferencia:
Ethernet estándar, denominada 10BaseT, soporta velocidades de transferencia de datos de 10 Mbps sobre una amplia variedad de cableado. También están disponibles versiones de Ethernet de alta velocidad. Fast Ethernet (100BaseT) soporta velocidades de transferencia de datos de 100 Mbps y Gigabit Ethernet soporta velocidades de 1 Gbps (gigabit por segundo) o 1,000 Mbps.
  • Token Ring
Las redes Token ring están implementadas en una topología en anillo. La topología física de una red Token Ring es la topología en estrella, en la que todos los equipos de la red están físicamente conectados a un concentrador o elemento central.
El anillo físico está cableado mediante un concentrador denominado unidad de acceso multiestación (multistation access unit, MSAU). La topología lógica representa la ruta del testigo entre equipos, que es similar a un anillo.
Importante El anillo lógico representa la ruta del testigo entre equipos. El anillo físico está cableado mediante un concentrador denominado unidad de acceso multiestación (multistation access unit, MSAU).
Método de acceso El método de acceso utilizado en una red Token Ring es de paso de testigo. Un testigo es una serie especial de bits que viaja sobre una red Token Ring. Un equipo no puede transmitir salvo que tenga posesión del testigo; mientras que el testigo está en uso por un equipo, ningún otro puede transmitir datos.
Cuando el primer equipo de la red Token Ring se activa, la red genera un testigo. Éste viaja sobre el anillo por cada equipo hasta que uno toma el control del testigo. Cuando un equipo toma el control del testigo, envía una trama de datos a la red. La trama viaja por el anillo hasta que alcanza al equipo con la dirección que coincide con la dirección de destino de la trama. El equipo de destino copia la trama en su memoria y marca la trama en el campo de estado de la misma para indicar que la información ha sido recibida.
La trama continúa por el anillo hasta que llega al equipo emisor, en la que se reconoce como correcta. El equipo emisor elimina la trama del anillo y transmite un nuevo testigo de nuevo en el anillo.
Velocidad de transferencia La velocidad de transferencia en una red Token Ring se encuentra entre 4 y 16 Mbps.

  • Cable Coaxial
El cable coaxial está formado por un núcleo de hilo de cobre rodeado de un aislamiento, una capa de metal trenzado, y una cubierta exterior. El núcleo de un cable coaxial transporta las señales eléctricas que forman los datos. Este hilo del núcleo puede ser sólido o hebrado. Existen dos tipos de cable coaxial: cable coaxial ThinNet (10Base2) y cable coaxial ThickNet (10Base5). El cableado coaxial es una buena elección cuando se transmiten datos a través de largas distancias y para ofrecer un soporte fiable a mayores velocidades de transferencia cuando se utiliza equipamiento menos sofisticado.
El cable coaxial debe tener terminaciones en cada extremo.
  • El cable coaxial ThinNet puede transportar una señal en una distancia aproximada de 185 metros.
  • El cable coaxial ThickNet puede transportar una señal en una distancia de 500 metros. Ambos cables, ThinNet y ThickNet, utilizan un componente de conexión (conector BNC) para realizar las conexiones entre el cable y los equipos.
  • Cable de fibra óptica
El cable de fibra óptica utiliza fibras ópticas para transportar señales de datos digitales en forma de pulsos modulados de luz. Como el cable de fibra óptica no transporta impulsos eléctricos, la señal no puede ser intervenida y sus datos no pueden ser robados. El cable de fibra óptica es adecuado para transmisiones de datos de gran velocidad y capacidad ya que la señal se transmite muy rápidamente y con muy poca interferencia. Un inconveniente del cable de fibra óptica es que se rompe fácilmente si la instalación no se hace cuidadosamente. Es más difícil de cortar que otros cables y requiere un equipo especial para cortarlo.
Selección de cables La siguiente tabla ofrece una lista de las consideraciones a tener en cuenta para el uso de las tres categorías de cables de red.
  • DISPOSITIVOS DE COMUNICACIÓN INALÁMBRICOS
Los componentes inalámbricos se utilizan para la conexión a redes en distancias que hacen que el uso de adaptadores de red y opciones de cableado estándares sea técnica o económicamente imposible. Las redes inalámbricas están formadas por componentes inalámbricos que se comunican con LANs.
Excepto por el hecho de que no es un cable quién conecta los equipos, una red inalámbrica típica funciona casi igual que una red con cables: se instala en cada equipo un adaptador de red inalámbrico con un transceptor (un dispositivo que transmite y recibe señales analógicas y digitales). Los usuarios se comunican con la red igual que si estuvieran utilizando un equipo con cables.
Importante
Salvo por la tecnología que utiliza, una red inalámbrica típica funciona casi igual que una red de cables: se instala en cada equipo un adaptador de red inalámbrico con un transceptor, y los usuarios se comunican con la red como si estuvieran utilizando un equipo con cables.
Existen dos técnicas habituales para la transmisión inalámbrica en una LAN: transmisión por infrarrojos y transmisión de radio en banda estrecha.

• Transmisión por infrarrojos
Funciona utilizando un haz de luz infrarroja que transporta los datos entre dispositivos. Debe existir visibilidad directa entre los dispositivos que transmiten y los que reciben; si hay algo que bloquee la señal infrarroja, puede impedir la comunicación. Estos sistemas deben generar señales muy potentes, ya que las señales de transmisión débiles son susceptibles de recibir interferencias de fuentes de luz, como ventanas.
• Transmisión vía radio en banda estrecha
El usuario sintoniza el transmisor y el receptor a una determinada frecuencia. La radio en banda estrecha no requiere visibilidad directa porque utiliza ondas de radio. Sin embargo la transmisión vía radio en banda estrecha está sujeta a interferencias de paredes de acero e influencias de carga. La radio en banda estrecha utiliza un servicio de suscripción. Los usuarios pagan una cuota por la transmisión de radio.




REALIZACIÓN DE LA CONEXIÓN EN UNA RED

Para realizar la conexión con una red son necesarias las tarjetas de interfaz de red y el cable (a menos que se utilice un sistema de comunicación sin cable). Existen distintos tipos de tarjetas de interfaz y de esquemas de cableados.

TARJETA DE INTERFAZ DE RED (NIC)

Hay tarjetas de interfaz de red disponibles de diversos fabricantes. Se pueden elegir entre distintos tipos, según se desee configurar o cablear la red. Los tres tipos más usuales son ArcNet, Ethernet y Token Ring. Las diferencias entre estos distintos tipos de red se encuentran en el método y velocidad de comunicación, así como el precio. En los primeros tiempos de la informática en red (hace unos dos o tres años) el cableado estaba mas estandarizado que ahora. ArcNet y Etherner usaban cable coaxial y Token Ring usaba par trenzado. Actualmente se pueden adquirir tarjetas de interfaz de red que admitan diversos medios, lo que hace mucho más fácil la planificación y configuración de las redes. En la actualidad las decisiones se toman en función del costo, distancia del cableado y topología. En la actualidad existen diversas topologías de redes

TOPOLOGIA


La topología de una red es la organización del cableado. La cuestión más importante al tener en cuenta la elegir el sistema de cableado es su costo, si bien también se ha de tener en cuenta el rendimiento total y sí integridad.

Según su topología o la forma en que están estructuras se dividen en 5 grupos:

BUS: Se aplica a la conexión lineal entre equipos y es bidireccional.
Ea fácil controlar el flujo del trafico entre las distintas terminales.
La limitación de esta topología es que suele existir un solo canal de comunicaciones para todos los dispositivos de la red. Si el canal de comunicaciones falla, deja de trabajar toda la red.

ANILLO: Se aplica a la conexión circundante entre equipos, es decir el último nodo se une con el primero.
Cada estación recibe la señal y la retransmite a la siguiente del anillo.
No existen, o son muy raras las congestiones causadas por el cableado.
Cada componente realiza operaciones sencillas.
Doble acceso por el anillo, si falla entre terminales, se toma el camino inverso y no se interrumpe el proceso

ESTRELLA: Se aplica a aquellas conexiones que surgen de un punto central y de esta manera se centraliza su operación.
Es fácil controlar y su trafico es sencillo.
El servidor posee el control total de los equipos que funcionan como terminales conectadas a el, encamina el trafico hacia el resto de los componentes y localiza averías.
La limitación es que la red puede sufrir saturaciones y problemas en caso de averías del servidor.

MALLA: El mas utilizado. Mediante cableado estructurado se puede llegar a través de distintos caminos. Es el mas recomendable porque no tiene mayor costo. En cada piso se coloca una pachera (cable) y se cambia de lugar, entonces tiene ventajas de anillo y de conexión. A través de la malla se trata de llegar al conjunto de equipos por distintos caminos. Este tipo de topología tiene redundancia en equipo y vínculos. Tiene relativa inmunidad a congestionarse en el cableado t por averías. Es posible orientar el trafico por caminos alternativos en caso de que algún nodo se encuentre ocupado o este averiado.

HIBRIDAS: Se aplica cuando se combinan BUS-ANILLO o BUS-ESTRELLA.

Es importante que para evitar inconvenientes haya un servidor redundante en estado de santd by para que si un servidor falla se trabaja con el otro y la red no se ve afectada. También seria bueno poder tener redundancia en alimentación eléctrica para evitar problemas.

A parte de estos 5 grupos también se puede hablar de TOPOLOGIA FISICA: que corresponde a la manera en que está tendido el cableado y su distribución y la TOPOLOGIA LOGICA: que corresponde al modo de operación de la red. Estas topologías no necesariamente tienen que ser iguales en una red. Por ejemplo, en una red LAN la topología física debe ser siempre en estrella independientemente de como sea su topología lógica, salvo en casos que sean plenamente justificados.

CABLEADO


El cable coaxil fue uno de los primeros que se usaron, pero el par trenzado ha ido ganando popularidad. El cable de fibra óptica se utiliza cuando es importante la velocidad, si bien los avances producidos en el diseño de las tarjetas de interfaz de red permiten velocidades de transmisión sobre cable coaxial o par trenzado por encima de lo normal. Actualmente el cable de fibra óptica sigue siendo la mejor elección cuando se necesita una alta velocidad de transferencia de datos.











COMPONENTES DE UNA RED


Una red de computadoras está conectada tanto por hardware como por software. El hardware incluye tanto las tarjetas de interfaz de red como los cables que las unen, y el software incluye los controladores (programas que se utilizan para gestionar los dispositivos y el sistema operativo de red que gestiona la red. A continuación se listan los componentes, tal y como se muestran en la figura
- Servidor
- Estaciones de trabajo.
- Placas de interfaz de red (NIC).
- Recursos periféricos y compartidos.